Transient Stability Assessment of Two-Area Power System with LQR based CSC-STATCOM

A current source converter (CSC) based static synchronous compensator (STATCOM) is a shunt flexible AC transmission system (FACTS) device, which has a vital role as a stability support for small and large transient instability in an interconnected power network. A robust linear quadratic regulator (LQR) based controller for CSC-STATCOM is proposed. In this paper, LQR based CSC-STATCOM is designed to enhance the transient stability of two-area two-machine power system. First of all, modeling & LQR based controller design for CSC-STATCOM are described. After that, the impact of the proposed scheme on the test system with different disturbances is demonstrated. The feasibility of the proposed scheme is demonstrated through simulation in MATLAB and the simulation results show an improvement in the transient stability of power system with CSC-STATCOM. Also, the robustness and effectiveness of CSC-STATCOM are better rather than other shunt FACTS devices (SVC & VSC-STATCOM) in this paper.

Key words: CSC, EAC (equal area criterion), FACTS, LQR, STATCOM.

1 INTRODUCTION

The continuous enhancement of electrical loads due to the modernization of the society results in transmission structure to be operated near to their stability restrictions. So the renovation of urban and rural power network becomes necessary. Due to governmental, financial and green climate reasons, it is not always possible to construct new transmission lines to relieve the power system stability problem at the existing overloaded transmission lines. As a result, the utility industry is facing the challenge of efficient utilization of the existing AC transmission lines in power system networks. So transient stability, voltage regulation, damping oscillations etc. are the most important operating issues that electrical engineers are facing during power-transfer at high levels.

In above power quality problems, transient stability is the one of the most important key factor during power-transfer at high levels. According to the literature, transient stability of a power system is its ability to maintain synchronous operation of the machines when subjected to a large disturbance [1]. While the generator excitation system can maintain excitation control but it is not adequate to sustain the stability of power system due to faults or over-loading near to the generator terminals [2].

Therefore researchers are working on this problem long time to find the solution. These solutions are such as using wide-area measurement signals [3], phasor measurement unit [4] and flexible AC transmission system etc. In these
solutions, one of the powerful methods for enhancing the transient stability is to use flexible AC transmission system (FACTS) devices [5-8]. Even though the prime objective of shunt FACTS devices (SVC, STATCOM) is to maintain bus voltage by absorbing (or injecting) reactive power, they are also competent of improving the system transient stability by diminishing (or increasing) the capability of power transfer when the machine angle decreases (increases), which is accomplished by operating the shunt FACTS devices in inductive (capacitive) mode.

In many cited research papers [2, 9-11], the different types of these devices and with different control techniques are used for improving transient stability. Among these devices, the STATCOM is valuable for enhancement stability and frequency stabilization due to the rapid output response, lower harmonics, superior control stability and small size etc. [8, 12, 13]. By their inverter configuration, basic Type of STATCOM topology can be realized by either a current-source converter (CSC) or a voltage-source converter (VSC) [13-17]. But recent research confirms several merits of CSC based STATCOM over VSC based STATCOM [18-20]. These advantages are high converter reliability, quick starting, inherent short-circuit protection, the output current of the converter is directly controlled and in low switching frequency this reduces the filtering requirements compared with the case of a VSC. Therefore CSC based STATCOM is very useful in power system rather than VSC based STATCOM in many cases.

Presently the most used techniques for controller design of FACTS devices are the Proportional Integration (PI), PID controller [21], pole placement and linear quadratic regulator (LQR) [22]. But LQR and pole placement algorithms give quicker response in comparison to PI & PID algorithm and LQR is the optimal theory of pole placement method and describes the optimal pole location based on two cost function [23]. So LQR method has better performance among these methods.

The main contribution of this paper is the application of LQR based CSC-STATCOM for transient stability improvement of power system by injecting (or absorbing) reactive power. In this paper, the proposed LQR controller based CSC-STATCOM is used in Two area power system with dynamic load under serious disturbance conditions (three phase fault or heavy loading) to enhancement of transient stability studies and observe impact of the CSC-STATCOM on electromechanical oscillations and transmission capacity. More ones, the resulting outcomes from the proposed algorithm based CSC-STATCOM are compared to that obtained from the other shunt FACTS devices (SVC & VSC based STATCOM) which are used in previous works [24, 25].

The rest of paper is prepared as follows. Section-2 discusses about the circuit modeling & LQR controller designing of CSC based STATCOM. A two-area two-machine power system is described with a CSC-STATCOM device in Section-3. Simulation results of the test system with & without CSC based STATCOM for severe contingency are shown in Section-4, to improve the transient stability of the system. Comparison among the performance of different shunt FACTS devices such as SVC, VSC-STATCOM and CSC-STATCOM is also presented in Section-4. Finally, Section-5 concludes this paper.

2 MATHMATICAL MODELING OF LQR BASED CSC-STATCOM

2.1 CSC based STATCOM model

To verify the response of the CSC-STATCOM on dynamic performance, the mathematical modeling and control strategy of a CSC based STATCOM are presented. So in the design of controller for CSC based STATCOM, the state space equations from the CSC based STATCOM circuit is introduced. To minimize the complexity of mathematical calculation, the theory of dq transformation of currents has been applied in this circuit, which makes the d and q components as independent parameters. Fig. 1 shows the circuit diagram of a typical CSC based STATCOM.

Fig. 1. The representation of CSC based STATCOM

Where

- i_{SR}, i_{SS}, i_{ST} line current;
- v_{CR}, v_{CS}, v_{CT} voltages across the filter capacitors;
- v_R, v_S, v_T line voltages;
- I_{dc} dc-side current;
- R_{dc} internal resistance of the dc-link inductor (converter switching and conduction losses);
- L_{dc} smoothing inductor (dc-link);
- C filter capacitance;
- L inductance of the line reactor;
- R resistance of the line reactor
The basic mathematical equations of the CSC based STATCOM have been derived from the literature [20]. Therefore, only brief details of the primary equations for CSC-STATCOM are given here for the readers’ convenience. Based on the equivalent circuit of CSC-STATCOM as shown in Fig.1, the differential equations for the system can be achieved, which are derived in the abc frame and then transformed into the synchronous dq frame using dq transformation method [26].

\[
\frac{d}{dt} I_{dc} = -\frac{R_{dc}}{L_{dc}} I_{dc} - \frac{3}{2L_{dc}} M_d V_d - \frac{3}{2L_{dc}} M_q V_q \tag{1}
\]

\[
\frac{d}{dt} I_d = -\frac{R}{L} I_d + \omega I_q - \frac{1}{L} E_d - \frac{1}{L} V_d \tag{2}
\]

\[
\frac{d}{dt} I_q = -\omega I_d - \frac{R}{L} I_q + \frac{1}{L} V_q \tag{3}
\]

\[
\frac{d}{dt} V_d = -\frac{1}{C} I_d + \omega V_q + \frac{1}{C} M_d I_{dc} \tag{4}
\]

\[
\frac{d}{dt} V_q = -\frac{1}{C} I_q - \omega V_d + \frac{1}{C} M_q I_{dc} \tag{5}
\]

In above differential equations, \(M_d \) and \(M_q \) are the two input variables. Two output variables are \(I_{dc} \) and \(I_q \). Here, \(\omega \) is the rotation frequency of the system and this is equal to the nominal frequency of the system voltage. \(I_d \) & \(I_q \) are the d-axis & q-axis components of the line current. \(M_d \) & \(M_q \) are d-axis & q-axis components of the system modulating signal (m), respectively. Here \(M_d = m \cdot \cos \theta \) and \(M_q = m \cdot \sin \theta \) (where \(\theta \) is the phase angle of converter output current). \(E_d \) & \(E_q \) are direct & quadrature axis of the system voltage. Here \(E_d \) is taken as the RMS value of the system voltage and \(E_q \) is taken as a zero. \(V_d \) & \(V_q \) are the d-axis & q-axis components of the voltage across filter capacitor, respectively.

Equation (1) is shown that controller for CSC based STATCOM has nonlinearity characteristic. So this nonlinear property can be removed by accurately modeling of CSC based STATCOM. From equations (1)-(5), it can be seen that nonlinear property in the CSC-STATCOM model is due to the part of \(I_{dc} \). This nonlinear property is removed with the help of active power balance equation. Here, it has been assumed that the power loss in the switches and resistance \(R_{dc} \) is ignored and the turns ratio of the shunt transformer is \(n : 1 \). After using power balance equation and mathematical calculation, nonlinear characteristic is removed from the equation (1). Finally the equation is obtained below:

\[
\frac{d}{dt} (I_{dc}^2) = -\frac{2R_{dc}}{L_{dc}} (I_{dc}^2) - \frac{3E_d}{L_{dc} n} I_d \tag{6}
\]

In the equation (6) state variable \(I_{dc} \) is replaced by the state variable \((I_{dc}^2) \), to make the dynamic equation linear.

Finally the resulting better dynamic and robust model of the CSC-STATCOM in matrix form can be derived as:

\[
\begin{bmatrix}
\frac{d}{dt} (I_{dc})^2 \\
\frac{d}{dt} I_d \\
\frac{d}{dt} I_q \\
v_{cd} \\
v_{cq}
\end{bmatrix} = \begin{bmatrix}
\frac{2R_{dc}}{L_{dc}} & -\frac{E_d}{L_{dc} n} & 0 & 0 & 0 \\
-\frac{R}{L} & \frac{1}{L} & \frac{1}{L} & 0 & 0 \\
-\frac{R}{L} & 0 & \frac{1}{L} & \frac{1}{L} & 0 \\
0 & -\frac{1}{C} & 0 & 0 & -\omega_o \\
\frac{1}{C} & 0 & \frac{1}{C} & 0 & 0
\end{bmatrix} * \begin{bmatrix}
I_{iq}^2 \\
I_d \\
I_q \\
v_{cd} \\
v_{cq}
\end{bmatrix} + \begin{bmatrix}
\frac{E_d}{L_{dc} n} \\
0 \\
0 \\
0 \\
0
\end{bmatrix} * E_d \tag{7}
\]

Above modeling of CSC based STATCOM is written in the form of modern control methods i.e. State-space representation. For state-space modeling of the system, section 2.2 has been considered.

2.2 LQR controller Design

Linear Quadratic Regulator (LQR) theory is no doubt one of the most basic control system design methods. LQR algorithm is the optimal theory of pole placement method and picks the best possible pole location based on the two cost functions. This method finds the optimal feedback gain matrix that reduces the cost function. One way of representing the quadratic cost function in mathematics for LQR formulation is below:

\[
J = \int_0^\infty x^T Q x dt + \int_0^\infty u^T R u dt \tag{8}
\]

Here \(Q \) and \(R \) are the symmetric, non-negative definite weighting matrices.

In the dynamic modeling of system, State-space equations involve three types of variables: state variables \(x \), input \(u \) and output \(y \) variables with disturbance \(e \). So comparing (7) with the standard state-space representation i.e.

\[
\dot{x} = Ax + Bu + Fe \tag{9}
\]

\[
y = Cx \tag{10}
\]

where the system matrices as:

\[
x = \begin{bmatrix} I_{dc}^2 & I_d & I_q & V_d & V_q \end{bmatrix}^T; \ u = \begin{bmatrix} I_{id} & I_{iq} \end{bmatrix}^T
\]

\[
e = E_d; \ y = \begin{bmatrix} I_{dc}^2 & I_q \end{bmatrix}^T
\]
Following two equations are used.

\[
A = \begin{bmatrix}
-\frac{2R_{dc}}{L_{dc}} & -\frac{3E_d}{L_e} & 0 & 0 & 0 \\
0 & \frac{B}{L_e} & \omega & 0 & 0 \\
0 & -\omega & -\frac{B}{L_e} & 0 & \frac{1}{T} \\
0 & 0 & 0 & -\frac{1}{c} & -\omega \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\frac{1}{L_e} & 0 & 0 \\
0 & \frac{1}{c} & 0
\end{bmatrix}; \quad C = \begin{bmatrix}
1 & 0 & 0 & 0 & 0
\end{bmatrix}^T; \quad F = \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

Equations (9) & (10) represent five system states, two control inputs and two control outputs. Where, \(x \) is the state vector, \(u \) is the input vector, \(A \) is the basis matrix, \(B \) is the input matrix, \(e \) is disturbance input.

Now in the presence of disturbance the control equation can be formulated as:

\[u = -K \ast x + J \ast y_{ref} + N \ast e \]

Then the state equation of closed loop is modified as

\[\dot{x} = (A - B \ast K) \ast x + J \ast y_{ref} + B \ast N \ast e + F \ast e \]

Where \(K \) is the state-feedback matrix, \(N \) is the feedback matrix for the disturbance input, \(y_{ref} \) is the reference input, and \(J \) is a diagonal matrix which is used to obtain the unity steady-state gain. The matrix \(N \) should be designed in such a way that the output \(y \) should be minimally influenced by the disturbance \(e \). This objective can be achieved by making:

\[\lim_{s \to 0} C(s \ast I - A + B \ast K)^{-1} (B \ast N + F) = 0 \quad \& \quad \dot{x} = 0 \]

Therefore \(J \) & \(N \) values are found out from a mathematical calculation for tracking the reference output value \((y_{ref})\) by the system output value \((y)\). For computation of these values, two equations are used as such:

\[J = [C \ast (- (A - B \ast K)^{-1}) \ast B]^{-1} \]

and

\[N = [C \ast (- (A + B \ast K)^{-1}) \ast B]^{-1} \ast [C \ast (- (A + B \ast K)^{-1}) \ast F] \]

Here \(y_{ref} \) can be written as below:

\[y_{ref} = \begin{bmatrix}
\frac{I_{dc}(ref)}{I_{q}(ref)}
\end{bmatrix} \]

In order to, reduce the cost function (performance index) and to achieve the best value of gain matrices \(K \), following two equations are used.

\[K = R^{-1}B^TP \]

Equation (14) is also called the algebraic riccati equation [27]. The final configuration of the proposed LQR based CSC-STATCOM is shown in Fig. 2.

Fig. 2. Control Structure of LQR based CSC-STATCOM

3 TWO-AREA POWER SYSTEM WITH CSC-STATCOM FACTS DEVICE

In order to observe the performance of proposed LQR controller in the previous section, a two-area two-machine power system with a CSC-STATCOM is considered. The CSC-STATCOM is connected at bus b through a long transmission system as shown in Fig. 3. Figure 3(b) represents the equivalent circuit of test system without CSC-STATCOM. The active power flows from area 1 to area 2. Figure 3(c) represents the equivalent circuit of the test system with a CSC-STATCOM, where CSC-STATCOM is used as shunt current source device.

The dynamic model of the machine, with a CSC-STATCOM, can be written in the differential algebraic equation form as follows:

\[\dot{\delta} = \omega \]

\[\dot{\omega} = \frac{1}{M} [P_m - P_{co} - P_{e}^{sec}] \]

Here \(\omega \) is the rotor speed, \(\delta \) is the rotor angle, \(P_m \) is the mechanical input power of generator, the output electrical power without CSC-STATCOM is represents by \(P_{co} \), and \(M \) is the moment of inertia of the rotor. Equation (16) is also called as swing equation. The additional factor of the output electrical power of generator from a CSC-STATCOM is \(P_{e}^{sec} \) in the swing equation. From Fig. 3(b), output of generator \((P_{co})\) is

\[P_{co} = \frac{E_1 V_{bo}}{X_1} \sin(\delta - \theta_{bo}) = \frac{E_1 E_2}{X_1 + X_2} \sin(\delta) \]

Where \(V_{bo} \) and \(\theta_{bo} \) are voltage magnitude and angle at bus b in the absence of CSC-STATCOM, which are computed as follows:

\[\theta_{bo} = \tan^{-1}\left[\frac{X_2 E_1 \sin \delta}{X_2 E_1 \cos \delta + X_1 E_2} \right] \]

\[A^TP + PA - PB R^{-1} B^TP + Q = 0 \]

Here, \(A \) is the state transition matrix, \(B \) is the input matrix, \(x \) is the state vector, \(u \) is the input vector, \(P \) is the state-feedback matrix, \(Q \) is the input matrix, \(e \) is disturbance input.
\[V_{bo} = \left(\frac{X_2 E_1 \cos(\delta - \theta_{bo}) + X_1 E_2 \cos \theta_{bo}}{X_1 + X_2} \right) \]

(19)

For calculation of \(P^{\text{csc}}_e \), Fig. 3(c) is considered and assumed that CSC-STATCOM is working in capacitive mode. The injected current from CSC-STATCOM to test system can be written as:

\[I_{\text{csc}} = I_{\text{csc}} \angle (\theta_{bo} - 90^\circ) \]

(20)

In Fig. 3(c), the magnitude \(V_{bo} \) and angle \(\theta_{bo} \) of voltage at bus b can be computed as:

\[\theta_{bo} = \tan^{-1} \left[\frac{X_2 E_1 \sin \delta}{X_2 E_1 \cos \delta + X_1 E_2} \right] \]

(21)

\[V_{bo} = \left(\frac{X_2 E_1 \cos(\delta - \theta_{bo}) + X_1 E_2 \cos \theta_{bo}}{X_1 + X_2} \right) \]

(22)

From equation (22), it can be said that the voltage magnitude of bus b \((V_{bo}) \) depends on the STATCOM current \((I_{\text{csc}}) \). In Fig. 3(c), the electrical output power \(P^{\text{csc}}_e \) of machine due to a CSC-STATCOM, can be expressed as:

\[P^{\text{csc}}_e = \frac{E_1 V_{bo}}{X_1} \sin(\delta - \theta_{bo}) \]

(23)

Finally, using equations (22) & (23) the total electrical output \((P_e) \) of machine with CSC-STATCOM can be written as:

\[P_e = P_{eo} + P^{\text{csc}}_e \Rightarrow \]

\[P_e = P_{eo} + \frac{X_1 X_2 E_1}{(X_1 + X_2) X_1} I_{\text{csc}} \sin(\delta - \theta_{bo}) \]

(24)

All above equations are represented for the capacitive mode of CSC-STATCOM. For the inductive mode of operation negative value of \(I_{\text{csc}} \) can be substituted in equations (20), (22) & (24) in place of positive \(I_{\text{csc}} \). With the help of equation (16), the power-angle curve of the test system can be drawn for stability analysis as shown in Fig. 4.

In Fig. 3(c), the magnitude \((V_{bo}) \) and angle \((\theta_{bo}) \) of voltage at bus b can be computed as:

From equation (22), it can be said that the voltage magnitude of bus b \((V_{bo}) \) depends on the STATCOM current \((I_{\text{csc}}) \). In Fig. 3(c), the electrical output power \(P^{\text{csc}}_e \) of machine due to a CSC-STATCOM, can be expressed as:

\[P^{\text{csc}}_e = \frac{E_1 V_{bo}}{X_1} \sin(\delta - \theta_{bo}) \]

(23)

Finally, using equations (22) & (23) the total electrical output \((P_e) \) of machine with CSC-STATCOM can be written as:

\[P_e = P_{eo} + P^{\text{csc}}_e \Rightarrow \]

\[P_e = P_{eo} + \frac{X_1 X_2 E_1}{(X_1 + X_2) X_1} I_{\text{csc}} \sin(\delta - \theta_{bo}) \]

(24)

All above equations are represented for the capacitive mode of CSC-STATCOM. For the inductive mode of operation negative value of \(I_{\text{csc}} \) can be substituted in equations (20), (22) & (24) in place of positive \(I_{\text{csc}} \). With the help of equation (16), the power-angle curve of the test system can be drawn for stability analysis as shown in Fig. 4.
allowable value δ_m at point f, for system stability. The area e-f-g-d-e represents the decelerating area A_d as defined in equation (25). From previous literature [1], equal area criterion for stability of the system can be written as:

$$\int_{\delta_0}^{\delta_c} (P_m - P_f^e) d\delta = \int_{\delta_m}^{\delta_c} (P_p^e - P_m) d\delta \Rightarrow A_a = A_d$$

(25)

This equation is generated from Fig. 4, where δ_c is critical clearing angle. P_p^e is an electrical output for post-fault condition. P_f^e is an electrical output during fault condition. From Fig. 4, it is seen that for capacitive mode of operation ($I_{csc} > 0$), the $P - \delta$ curve is not only lifted up but also displaced toward right and that endues more decelerating area and hence higher stability limit. Now in the following section transient stability of two-area two-machine power system is analyzed using the proposed LQR based controller with CSC-STATCOM.

4 SIMULATION RESULTS

4.1 Power system under study:

In this section, two-area power system is considered as test system for study. For this type of test system, a 500-kV transmission system with two hydraulic power plants P_1 (machine-1) & P_2 (machine-2) connected through 700-km long transmission line is taken as shown in Fig. 5. Rating of first power generation plant (P_1) is 13.8 kV/1000 MVA, which is used as P_V generator bus type. The electrical output of the second power plant (P_2) is 5000 MVA, which is used as a swing bus for balancing the power. One 5000 MW large resistive load is connected near the plant P_2 as shown in Fig. 5. To maintain the synchronism of plants (i.e. machines 1 & 2) and improved the transient stability of the test system after disturbances (faults or heavy loading), a LQR based CSC-STATCOM is connected at the mid-point of transmission line (at bus B2). Achieve maximum efficiency; CSC-STATCOM is connected at the mid-point of transmission line, as per [28]. The two hydraulic generating units are assembled with a turbine-governor set and excitation system, as explained in [1]. Power oscillation damping (POD) unit is not used with shunt FACTS device. All the data required for this test system model are mentioned in Appendix A.

The impact of the LQR controller based CSC-STATCOM has been observed for maintaining the system stability through MATLAB/SIMULINK. Severe contingencies such as short-circuit fault and instant loading, are considered.

4.2 Case I-Short-Circuit Fault:

A three-phase fault is created at near bus B1 at $t = 0.1 s$ and is cleared at 0.23 s. The impact of system with & without CSC based STATCOM, due to this disturbance are shown in Figs. 6 to 11. Simulations are carried out for 8 s to observe the nature of transients. From Figs. 6 & 7, it is observed that the system without CSC-STATCOM is unstable even after the clearance of the fault. But the same system with LQR based CSC-STATCOM is restored and stable after the clearance of the fault as observed from Figs. 8 to 11.

Synchronism between two machines M1 & M2 is also maintained as shown in Figs. 9 & 10. CCT is defined as the maximal fault duration for which the system remains transiently stable [1]. The critical clearing time (CCT) of fault
is also found out for the test system stability by simulation. The fault time is increased to find the critical stability margin, thus CCT is obtained. CCT of the fault for system with & without CSC-STATCOM are 286 ms and 222 ms respectively, as shown in Table-1. It is observed that CCT of fault is also increased due to the impact of LQR based CSC-STATCOM.

4.3 Case II-Large Loading:

For heavy loading case, a large load (10000 MW/5000 Mvar) is connected at near bus B1 (i.e. at near plant P_1) in Fig. 5. This loading occurs during time period 0.1 s to 0.5 s. Due to this disturbance, the simulation results of test system with and without CSC-STATCOM are shown in Figs. 12 to 17. Clearly, the system becomes unstable in the absence of CSC-STATCOM due to this disturbance as in Figs. 12 & 15. But system with CSC-STATCOM is stable as observed in Figs. 14 to 17. Figure 17 also shows the amount of reactive power injected or absorbed by CSC-STATCOM.
4.4 Case III-A comparative study:

In order to demonstrate the robust performance of the proposed scheme for improving the transient stability of the system, outcomes from the proposed LQR based CSC-STATCOM are compared to that obtained from the other shunt FACTS devices such as SVC and VSC based STATCOM which have been reported in [24], [25]. It has been assumed that the test system is same for all shunt FACTS devices. The CCT for the system with & without CSC-STATCOM are 585 ms & 442 ms respectively, which are provided in Table 1.

Clearly, CCT for test system is better due to LQR based CSC-STATCOM. Hence the performance of CSC-STATCOM is satisfactory in this case also.
Transient Stability Assessment of Two-Area Power System with LQR based CSC-STATCOM

S. Gupta, R. K. Tripathi

Fig. 16. The test system response with CSC-STATCOM for a heavy loading (Case-II). (a) Positive sequence voltages at different buses B1, B2 & B3. (b) Power flow at bus B2

Fig. 17. For case-II (a) terminal voltages Vt1 & Vt2 of generators M1 & M2 with CSC-STATCOM respectively (b) reactive power inject (or absorb) by CSC-STATCOM

Table 1. CCT of disturbances for the test system stability with different shunt FACTS devices

<table>
<thead>
<tr>
<th>S. No.</th>
<th>FACTS devices</th>
<th>Critical Clearing Time (CCT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-I</td>
<td>Without CSC-STATCOM</td>
<td>100 ms – 222 ms</td>
</tr>
<tr>
<td></td>
<td>With CSC-STATCOM</td>
<td>100 ms – 286 ms</td>
</tr>
<tr>
<td>Case-II</td>
<td>Without CSC-STATCOM</td>
<td>100 ms – 442 ms</td>
</tr>
<tr>
<td></td>
<td>With CSC-STATCOM</td>
<td>100 ms – 585 ms</td>
</tr>
<tr>
<td>Case-III</td>
<td>With SVC</td>
<td>100 ms – 237 ms</td>
</tr>
<tr>
<td></td>
<td>With VSC-STATCOM</td>
<td>100 ms – 240 ms</td>
</tr>
<tr>
<td></td>
<td>With CSC-STATCOM</td>
<td>100 ms – 286 ms</td>
</tr>
</tbody>
</table>

Fig. 18. System response with different shunt FACTS devices (CSC-STATCOM, VSC-STATCOM & SVC) for Case-III (a) Difference between Rotor angles of machines M1 & M2 (b) speed difference of machines M1 & M2

5 CONCLUSIONS

In this paper, a two cost function based LQR controller for the better input-output response of CSC-STATCOM is proposed in order to enhance the transient stability of the power system under various kinds of disturbances. The LQR based state feedback control technique is formulated and applied to the CSC-STATCOM. The dynamic modeling of CSC based STATCOM is presented. The LQR based CSC-STATCOM model is made independent of the operating point by applying the power balance equation. With the help of LQR based CSC-STATCOM, transient stability of a two-area two-machine power system is improved and CCT of disturbances are also increased. The proposed scheme is simulated and verified on MATLAB platform. This paper also compares the performance of CSC-

devices and all shunt FACTS devices have the same rating (200 Mvar). To check the impact of these shunt FACTS devices on the test system with three phase fault condition, simulation results with these shunt FACTS devices are compared in Fig. 18. The three phase fault duration is 0.1 s to 0.2 s. CCT for the system with different shunt FACTS devices are shown in Table-1. If three-phase fault duration is increased i.e. from 0.1 s to 0.24 s, then system with SVC becomes unstable. This is shown in Fig. 19. Waveforms show that CSC-STATCOM is more effective and robust than that of other shunt FACTS devices (SVC & VSC-STATCOM) in terms of oscillation damping, settling time, CCT and transient stability of the test-system in Figs. 18 & 19.
A.2 For Excitation System of machines (M1 & M2):

\[V_{r} = 13.8 \text{kV}; R_{s} = 0.003 \text{; } f = 50 \text{ Hz}; X_{d} = 1.305 \text{; } X'_{d} = 0.296 \text{; } X''_{d} = 0.252 \text{; } X'_{q} = 0.50 \text{; } X''_{q} = 0.243 \text{; } T_{d} = 1.01 \text{s; } T''_{d} = 0.053 \text{s; } H = 3.7 \text{s.} \]

Where \(R_{s} \) is stator winding resistance of generators; \(V_{r} \) is generator voltage (L-L), \(f \) is frequency; \(X_{d} \) is synchronous reactance of generators; \(X'_{d} \) & \(X''_{d} \) are the transient and sub-transient reactance of generators in the direct-axis; \(X'_{q} \) & \(X''_{q} \) are the transient and sub-transient reactance of generators in the quadrature-axis; \(T_{d} \) & \(T''_{d} \) are the transient and sub-transient open-circuit time constant; \(H \) is the inertia constant of machine.

A.3 Parameters of shunt FACTS devices:

SVC:- System nominal voltage (L-L): 500 kV; \(f \): 50 Hz; \(K_{p} = 3 \); \(K_{i} = 500 \); \(V_{ref} = 1 \).

VSC-STATCOM:- System nominal voltage (L-L): 500 kV; DC link nominal voltage: 40 kV; DC link capacitance: 0.0375 \(\mu \)F; \(f \): 50 Hz; \(K_{p} = 50 \); \(K_{i} = 1000 \); \(V_{ref} = 1 \).

CSC-STATCOM:- System nominal voltage (L-L): 500 kV; \(V_{b} = E_{d} \); \(R_{dc} = 0.01 \Omega \); \(L_{dc} = 40 \text{ mH} \); \(C_{f} = 400 \mu \text{F} \); \(R = 0.3 \Omega \); \(L = 2 \text{ mH} \); \(\omega = 314 \); \(V_{ref} = 1 \).

REFERENCES

Fig. 19. System response with 3-phase fault for 0.1s to 0.24s in Case-III (a) Difference between Rotor angles of machines M1 & M2 (b) speed difference of machines M1 & M2

STATCOM with other shunt FACTS devices such as SVC & VSC-STATCOM in terms of oscillation damping, CCT and transient stability of two-area power system. It is observed that the CSC-STATCOM is more reliable and effective in comparison to these other FACTS devices. Hence, CSC based STATCOM can be regarded as an alternative FACTS device to that of other shunt FACTS devices i.e. SVC & VSC-STATCOM.

APPENDIX A

Parameters for various components used in the test system configuration of Fig. 5. (All parameters are in pu unless specified otherwise):

A.1 For generator of plant \((P_{1} & P_{2})\):

\[V_{G} = 13.8 \text{kV} \text{; } R_{s} = 0.003 \text{; } f = 50 \text{ Hz}; X_{d} = 1.305 \text{; } X'_{d} = 0.296 \text{; } X''_{d} = 0.252 \text{; } X'_{q} = 0.50 \text{; } X''_{q} = 0.243 \text{; } T_{d} = 1.01 \text{s; } T''_{d} = 0.053 \text{s; } H = 3.7 \text{s.} \]

Where \(R_{s} \) is stator winding resistance of generators; \(V_{G} \) is generator voltage (L-L), \(f \) is frequency; \(X_{d} \) is synchronous reactance of generators; \(X'_{d} \) & \(X''_{d} \) are the transient and sub-transient reactance of generators in the direct-axis; \(X'_{q} \) & \(X''_{q} \) are the transient and sub-transient reactance of generators in the quadrature-axis; \(T_{d} \) & \(T''_{d} \) are the transient and sub-transient open-circuit time constant; \(H \) is the inertia constant of machine.

A.2 For Excitation System of machines (M1 & M2):

Regulator gain and time constant \((K_{a} \& T_{a})\): 200, 0.001 s; Gain and time constant of exciter \((K_{e} \& T_{e})\): 1, 0.65 S; Damping filter gain and time constant \((K_{f} \& T_{f})\): 0.001, 0.1 s; Upper and lower limit of the regulator output: 0, 7.

APPENDIX B

SVC:- System nominal voltage (L-L): 500 kV; \(f \): 50 Hz; \(K_{p} = 3 \); \(K_{i} = 500 \); \(V_{ref} = 1 \).

VSC-STATCOM:- System nominal voltage (L-L): 500 kV; DC link nominal voltage: 40 kV; DC link capacitance: 0.0375 \(\mu \)F; \(f \): 50 Hz; \(K_{p} = 50 \); \(K_{i} = 1000 \); \(V_{ref} = 1 \).

CSC-STATCOM:- System nominal voltage (L-L): 500 kV; \(V_{b} = E_{d} \); \(R_{dc} = 0.01 \Omega \); \(L_{dc} = 40 \text{ mH} \); \(C_{f} = 400 \mu \text{F} \); \(R = 0.3 \Omega \); \(L = 2 \text{ mH} \); \(\omega = 314 \); \(V_{ref} = 1 \).

Sandeep Gupta received the B.Tech. and M.E. degrees in Electrical Engineering in 2006 and 2009, respectively. Currently, he is an associate professor at Rajasthan Institute of Engineering & Technology Jaipur. He is also a research scholar at Motilal Nehru National Institute of Technology Allahabad-211004, India. His areas of interest in research are Application of artificial intelligence to power system control design, FACTS device, Power Electronics and stability of power system. He has been author and co-author of many papers published in journals and presented at the national and international conferences.

Ramesh Kumar Tripathi was born in Allahabad on August 01, 1969. He received the B.E. (Hons.) degree in electrical engineering from Regional Engineering College, Durgapur, University of Burdwan (W.B.), India, in 1989 and the M. Tech. Degree in microelectronics from Institute of Technology, Banaras Hindu University, Varanasi, India, in 1991. He received Ph.D. degree in power electronics from Indian Institute of Technology, Kanpur, India, in 2002. Currently he is Prof. & Head in the Department of Electrical Engineering, Motilal Nehru N.I.T. Allahabad, India. His research interests are Power Electronics, Reactive Power Control, Switch Mode Rectifiers, Power Quality, Active Power Filters and Virtual Instrumentation. He has been author and co-author of many papers published in journals and presented at the national and international conferences.

AUTHORS’ ADDRESSES
Sandeep Gupta
Department of Electrical Engineering,
Rajasthan Institute of Engineering & Technology Jaipur - 303005, INDIA
Email: guptavilab@gmail.com

Prof. Ramesh K. Tripathi
Department of Electrical Engineering,
Motilal Nehru National Institute of Technology Allahabad - 211004, INDIA
Email: rktripathi@mnnit.ac.in